

Julie Marmet
Cheffe de projet Chiroptères
Muséum National d'Histoire Naturelle

Projets de recherche

Programme national de suivi des chauves-souris Vigie-Chiro

En savoir plus

Pollution lumineuse et sortie de gîte

En savoir plus

Eoliennes et activité de chasse des Chiroptères

En savoir plus

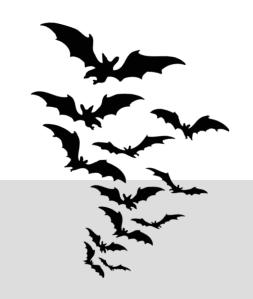
DEPOBIO - Base de données nationale sur la mortalité et l'activité acoustique des Chiroptères en contexte éolien

En savoir plus

Chauves-souris et autoroutes

En savoir plus

Coordination et Animation de la Capture des Chiroptère


En savoir plus

Bat migration Europe


Learn more

Biologie et écologie des chiroptères

Répartition

- → Près de 1400 espèces dans le monde
- → Toute la planète hormis les pôles

Répartition

- → Près de 1400 espèces dans le monde
- → Toute la planète hormis les pôles

La diversité

Craseonycteris thonglongyai

Masse: 2g

Envergure: 12 cm

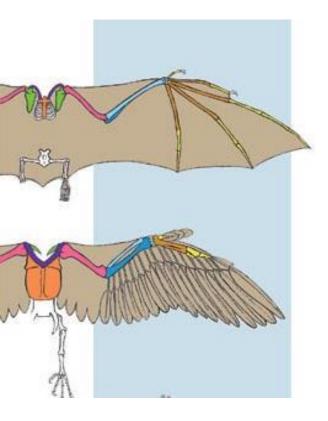
Pteropus vampyrus

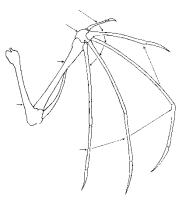
Masse: 1,2 kg

Envergure: 1m70

Comportement alimentaire, dans le monde

Elles peuvent être frugivores, nectarivores, carnivores, hématophages, piscivores





Chauve-souris ou Chiroptère

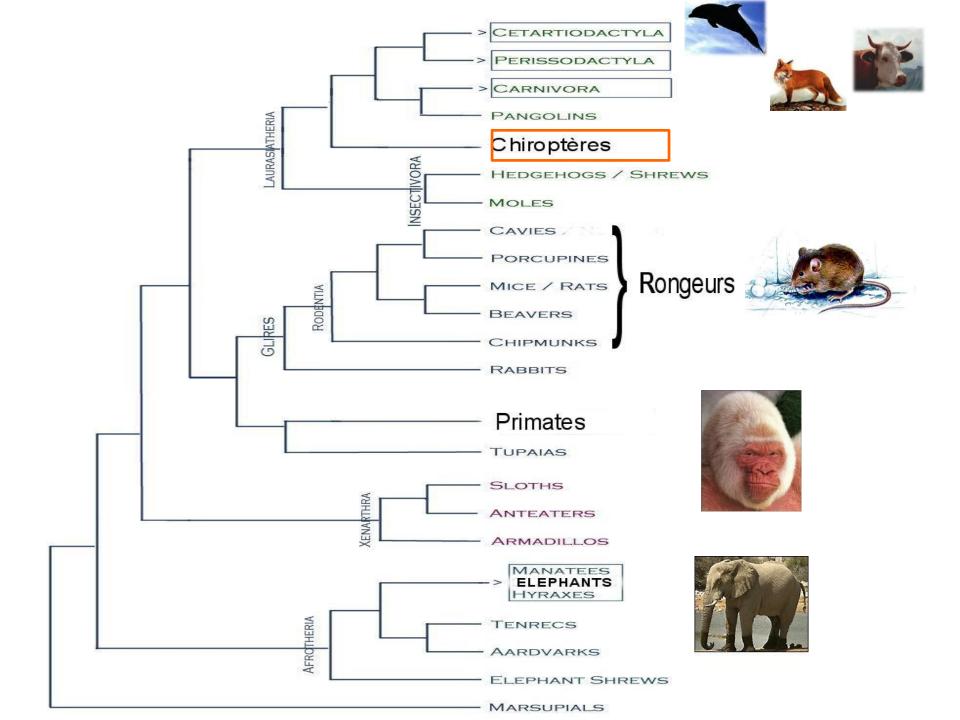
Nom scientifique : **Chiroptère**

=

Main (chiro-) + Aile (-ptère)


déformation de « souris-chouette » (cawa sorix en calva soris)

L'origine des chauves-souris


Plus anciennes chauves-souris connues: 55 MA

Déjà des adaptations au vol: petit thorax, crânes et membres antérieurs très développés...

L'origine des chauves-souris : un mystère...

l'origine arboricole depuis un petit mammifère terrestre est privilégiée

Classification

2 sous-ordres:

Ptéropodiformes - Yinpterochiroptera 6 familles, >440 espèces

Vespertilioniformes – Yangochiroptera 14 familles, >950 espèces

Caractéristiques sensorielles

Adaptations sensorielles essentielles :

- **Vision nocturne** (Roussettes, Renards volants)
- **Echolocation** pour les autres
- Olfaction pour la communication et pour la recherche de nourritures chez les nectarivores et frugivores

Rhinolophidés (4sp.)
Museau avec une feuille nasale

Molossidés (1sp.)
Grandes oreilles en forme de cornets tendus vers l'avant

Minioptéridés (1sp.)
Front bombé, les oreilles émergent peu de la fourrure du crâne

Vespertillonidés (29sp.)

Comportement alimentaire en Europe

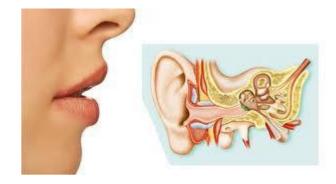
Exclusivement de petits arthropodes (insectes et araignées)

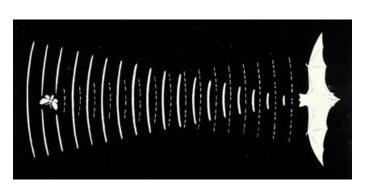
La Grande noctule peut exceptionnellement capturer des petits oiseaux...

Les Murins de Daubenton et de Capaccini peuvent aussi se nourrir de petits poissons

L'écholocation

→ Les chauves-souris émettent des sons avec le larynx et en analysent l'écho grâce à


leur système auditif


Informations sur : taille de la proie, forme, vitesse

→ Fréquences le plus souvent non perceptibles par l'oreille humaine

Emissions vocales chez l'Homme: de 60 à 1200 Hz

Oreille sensible : de 18 Hz à 18 kHz

Emissions sonar de 8 à 200 kHz

L'écholocation

Mais aussi pour communiquer...

... et pour parader

La détection ultrasonore : chant de parade de Noctule commune

Cycle de vie des chiroptères européens

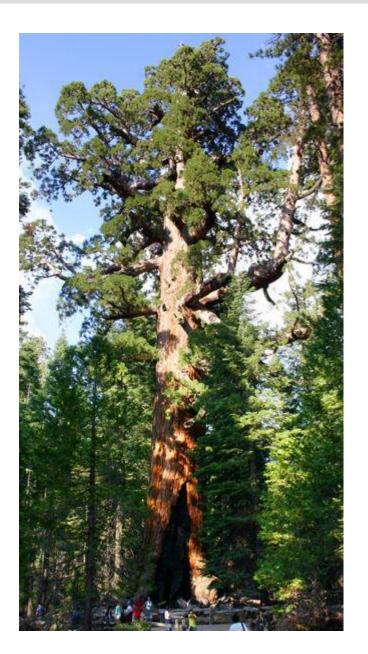
Hibernation

Hétérothermes: laissent descendre leur T° corporelle pour économiser de l'énergie

- Réserve de graisse
- 300-400 pulsations/min → 10-80 pulsations/min
- Phases de réhydratation, accouplement...
- Réveils très couteux en énergie

Individus isolés ou en colonie

Hibernation


Dans des grottes, arbres, bâtiments, église...

Caractéristiques des gîtes:

- Tranquillité
- Endroit frais, mais à l'abri du gel et très humide (>80% d'humidité)

Cycle de vie des chiroptères européens

Reproduction et structure sociale

- La grégarité est la règle, surtout au moment de la mise-bas et de l'élevage des jeunes. Très peu d'espèces sont solitaires.
- 1 cycle par an
- Âge à maturité : 1 à 4 ans

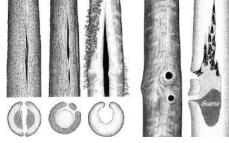
Reproduction

Implantation différée chez le Minioptère de Schreibers

Accouplement

Ovulation différée

Gestation ajustable : 40 à 70 jours



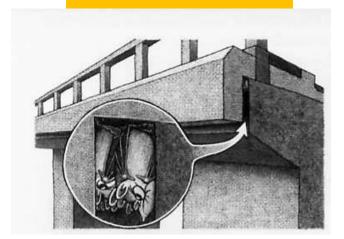
Gîtes: des préférences selon les espèces

Gîtes « arboricoles »

Fissures, trous de pics, sous écorce...

Fentes et cavités utilisées par les chiroptères Dessin: Philippe PENICAUD

Gîtes en bâtis



Gîtes « cavernicoles »

Grottes, carrières, souterrains, tunnels...

Ou encore...

Mouvements saisonniers

Transhumance, changement gîtes

- → Déplacements entre gîtes d'hiver et d'été
- Quelques dizaines de kilomètres
- La plupart des espèces

Migration

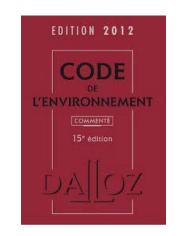
- → Grands déplacements, 2 fois par an, à l'automne et au printemps
- Autour de 1000 km, en Europe
- Quelques espèces (Noctules, pipistrelles)
- → Phénomène peu étudié, connu par le baguage fait à l'étranger (Nord-est de la côte de la Baltique)

© L. Arthur

Les techniques d'étude des Chiroptères

Statut de protection

En France, toutes les espèces sont protégées depuis 1976 (Code de l'Environnement et AM avril 2007)


→ Protection des individus mais aussi des sites de reproduction et des aires de repos

En Europe:

- -Directive Habitat Faune Flore : toutes les espèces en « annexe IV » et 12 en « annexe II » (désignation de zones spéciales de conservation)
- -Accord Eurobats

Au niveau international : Convention de Bonn (1990) et Convention de Berne (1996)

Listes rouges : plusieurs échelles

Un réseau d'acteurs pour l'étude et la protection des chiroptères

- → Peu de recherche académique en France
- → SFEPM (collège associatif) et les associations de protection de la nature

- → Professionnels de l'environnement (ONF, agents RN, PNR...)
- → Bureaux d'études
- → Des institutions

Un réseau d'acteurs pour l'étude et la protection des chiroptères

Un réseau associatif très actif

Un réseau d'acteurs pour l'étude et la protection des chiroptères

Plan National d'Actions en faveur des chiroptères

→ Troisième Plan National d'Actions en faveur des chiroptères 2016 – 2025

Un plan sur 10 ans, 3 objectifs, 10 actions

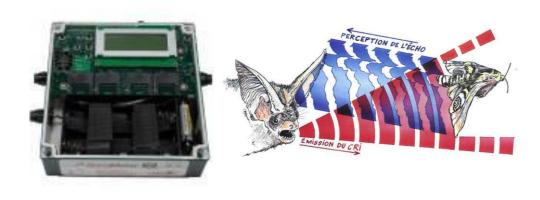
Soutenir le réseau et informer

Promouvoir les échanges, sensibiliser

Particularités des Chiroptères :

- -Nocturnes
- -Pas de chant audible, écholocation
- -Vol actif
- -Assez proches morphologiquement
- -Cycle de vie
- -Dans des gîtes, changements saisonniers
- -Beaucoup de mouvements
- -Grande diversité d'habitats

Peu visibles


Difficilement observables

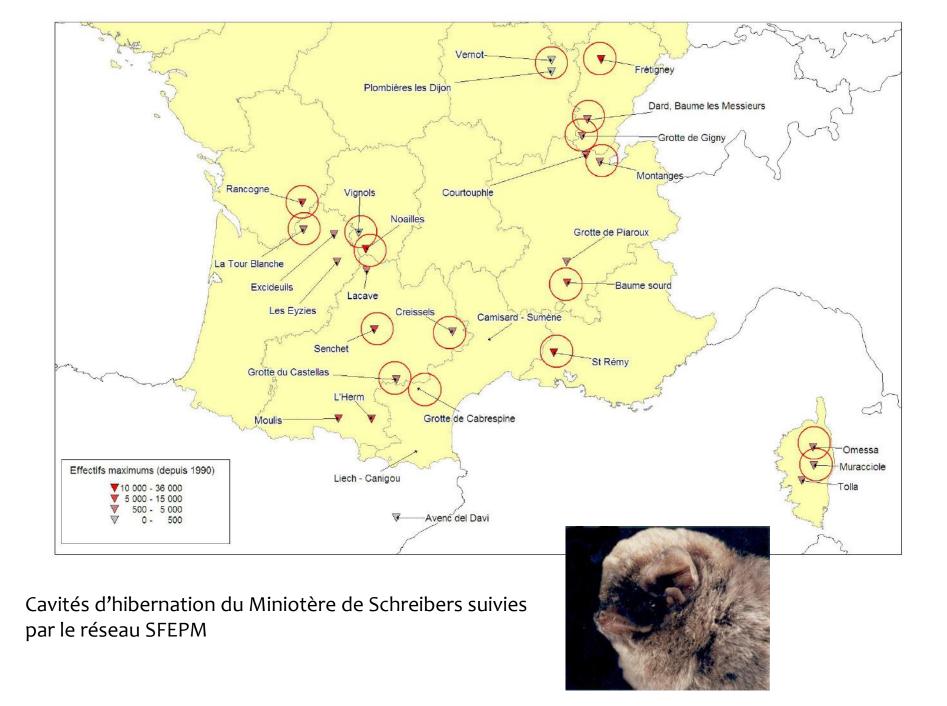
Des techniques de suivi propres à ce groupe

Les techniques d'inventaires et de suivi

Recherches de gîtes en été et en hiver, comptage

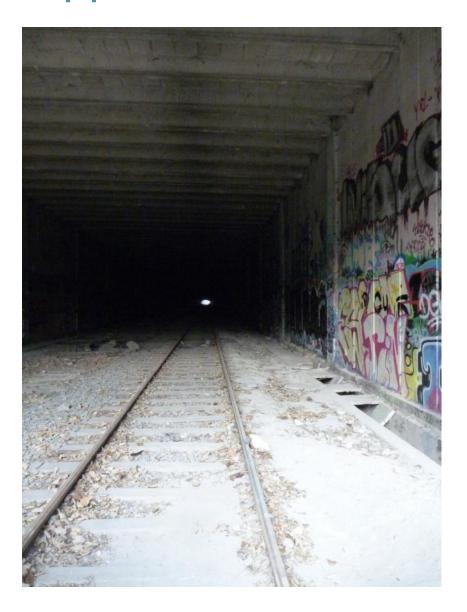
Détection ultrasonore

Capture

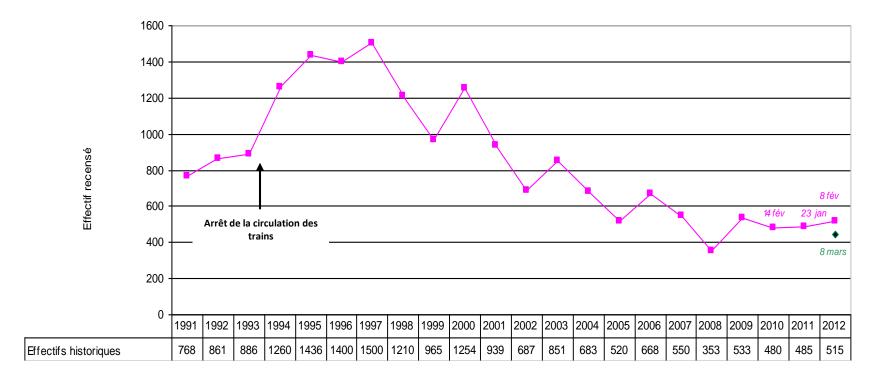

SOS - Enquêtes

Suivi des gîtes

- En hiver et en été
- A l'échelle des régions, pas de protocole national
- En général une fois par saison
- Techniques de comptage : à vue, photo, caméra, compteur, acoustique



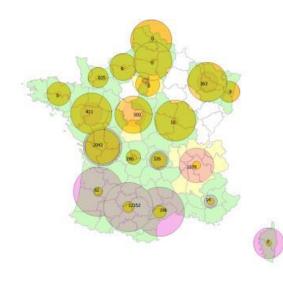
Les pipistrelles de la Petite ceinture



- Ancien réseau ferroviaire
- Tunnel désaffecté = 596 m
- Site découvert en 1990 par Alexandre Haquart, chiroptérologue et cataphile
- Site d'hibernation
- Essentiellement des pipistrelles sp.:
 Pipistrelle commune et potentiellement
 Pipistrelle de Kuhl et Pipistrelle de
 Nathusius
- Majoritairement dans les disjointements des parois latérales

Les pipistrelles de la Petite ceinture

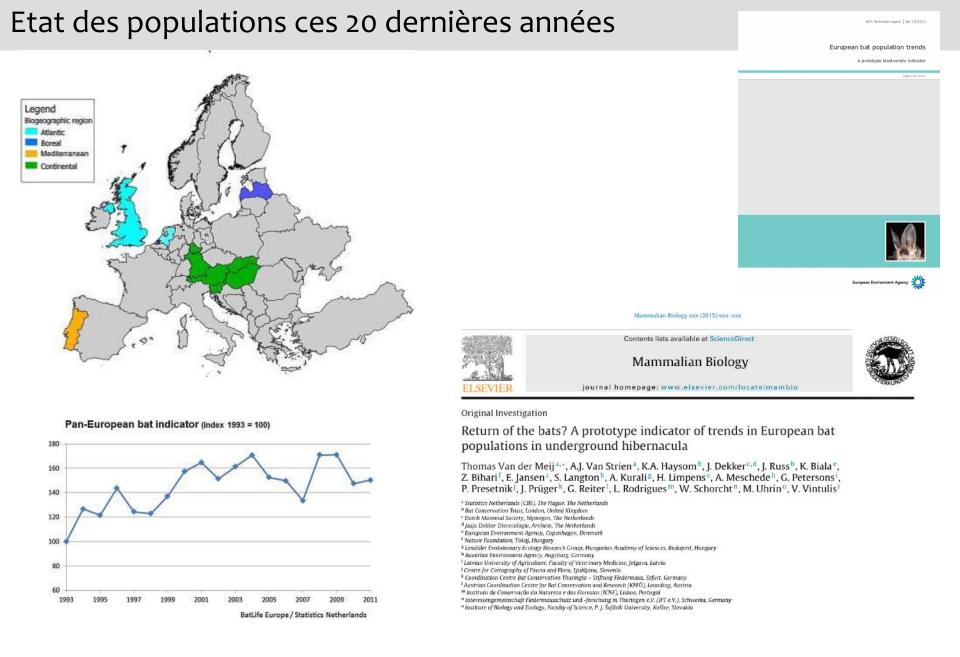
Comptées depuis 1991 par le groupe chiro IDF de la SFEPM et par l'ONF depuis 2012



- ➤ Arrêt de l'exploitation ferroviaire en 1993 → fort accroissement de la population hibernante entre 1993 et 1997
- Diminution moyenne de 4,6 % par an entre 1997 et 2009
- Population plus stable depuis 2009

Estimation des tendances nationales

Coordination Chiroptères Nationale (SFEPM) avec l'appui technique de Vigie Chiro (CESCO, MNHN)


Démarche:

- -collecte des comptages locaux pour calculer **régionalement** les tendances
- -agrégées au niveau national
- -agrégées à nouveau au niveau européen

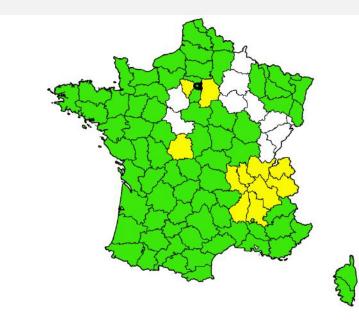
En pratique:

- Mise au point, distribution de scripts et de tutoriels
- Sessions de formation

1993–2011 : 16 espèces, 9 en augmentation, 1 en diminution, stable ou pas assez de données pour les autres

Total number

of sites


Résultat: une grande masse de données rassemblées et homogénéisées dans la plupart des régions.

Sur tout ce laps de temps, 4 millions d'individus ont été dénombrés au cours de 50 000 visites de gîtes.

Number of

species

Country/state

number of

years in time

Most recent

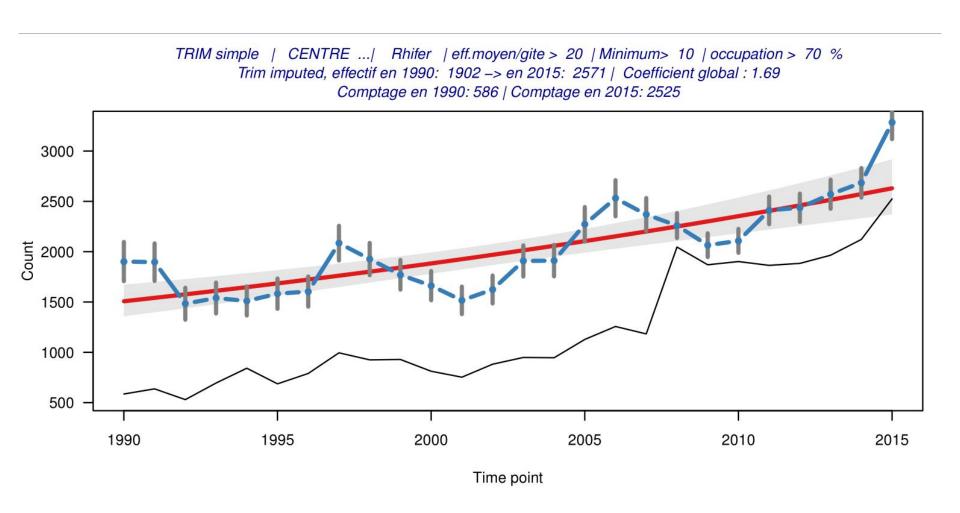
year

number of

volunteers

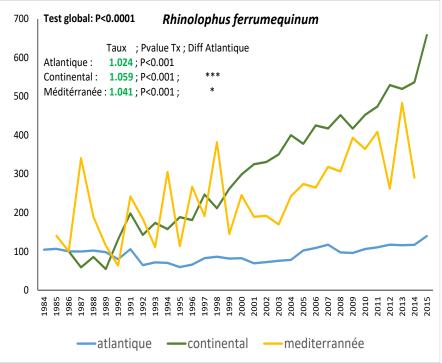
Austria	10	200	100	1993	2010/2011	17	30
Germany (Bavaria)	15	2300	350	1985	2010/2011	26	100
Germany (Thuringia)	9 (12)	1500	177	1990	2010/2011	20	80
Hungary	8	850	49	2005	2010/2011	6	25
Latvia	8	120	120	1992	2010/2011	18–19	20
Netherlands	9	1000	1000	1986	2010/2011	25	300

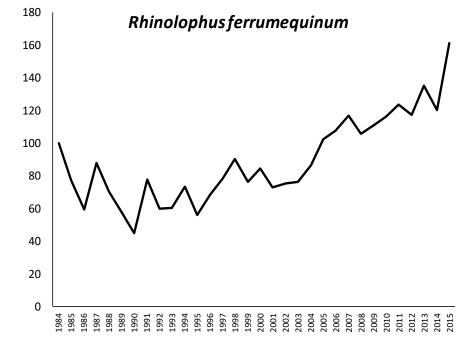
Start year of

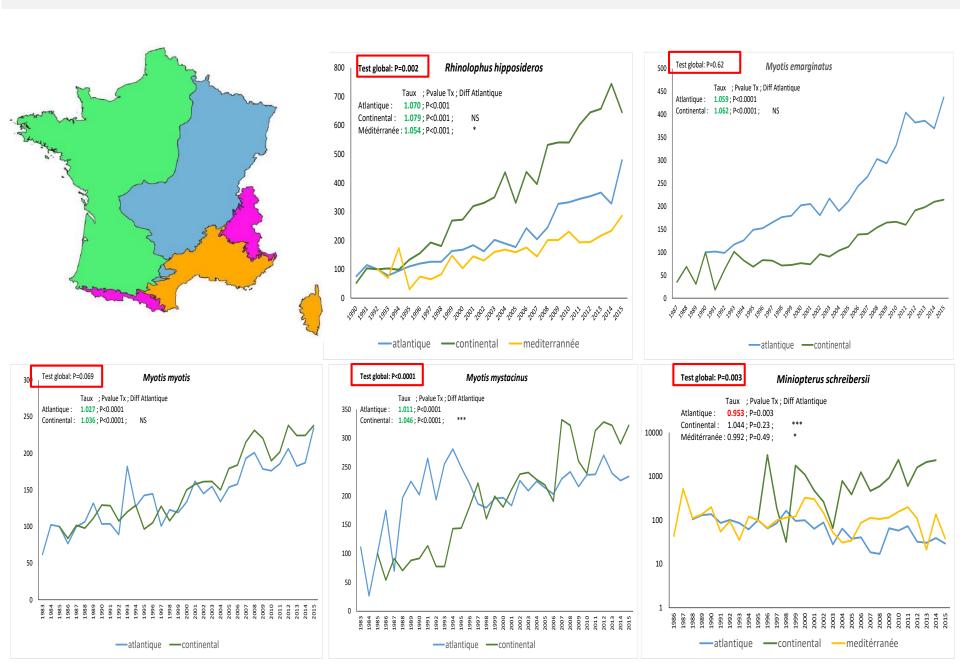

data collection

number of

sites visited


Sennany (muningla)	9 (12)	1300	111	1990	2010/2011	20	00
Hungary	8	850	49	2005	2010/2011	6	25
Latvia	8	120	120	1992	2010/2011	18–19	20
Netherlands	9	1000	1000	1986	2010/2011	25	300
Portugal	7	38	21	1987	2011	23	40
Slovakia	18	50	50	1997	2010	13	60
Slovenia	8	65	20–50	1993	2010/2011	9	30
United Kingdom	7	617	361	1997	2010/2011	13	117
France	17	10000	2500	1985	2015	20-30	1500


En région Centre, les différences entre effectifs comptés et estimés pour le Grand Rhinolophe



Un exemple classique, le Grand Rhinolophe Tendance nationale et par régions biogéographiques

Analyse des données issues des anciens registres de baguage des chauves-souris

De 1936 à 1989

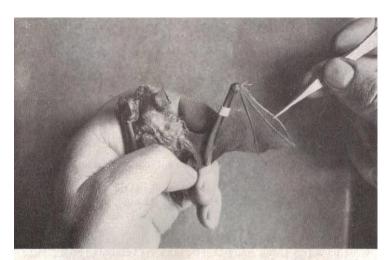
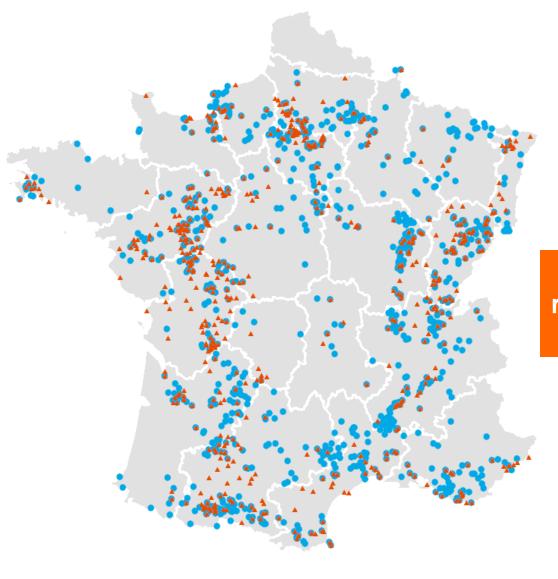
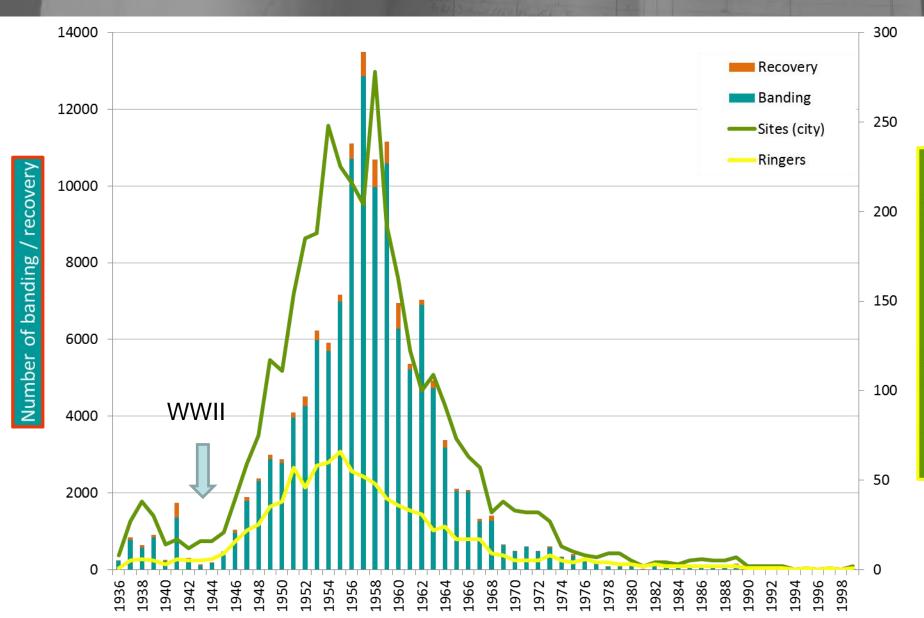
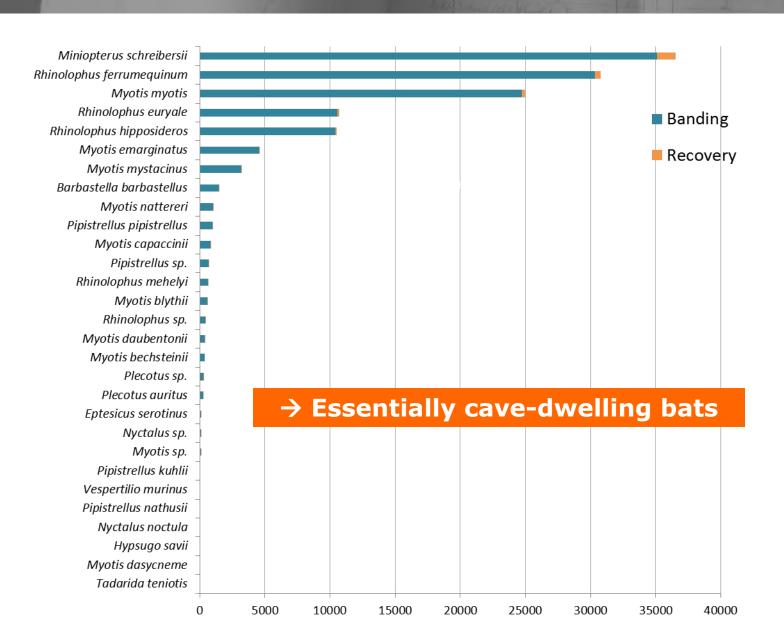
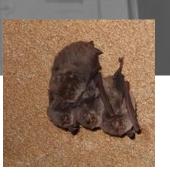



Fig. 5. — Emplacement de la bague à l'avant-bras d'une chauve-souris (Grand Rhinolophe). Cliché P. Rode.

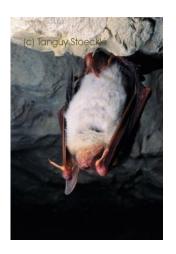
	33, 744, 44 2342	ton, PARIS Vº			ADI, A FEIG, DISPOSIT DATE	strative Contrate, 6, rue de Furnisoberg (7-67 / 1 363	14
NUMÉRO de la Bague	ESPÈCE D'OISEAU BAGUÉ		SEXE	AGR	LOCALITÉ ET PATS DU BAGUAGE	OBSERVATIONS	NUMÉRI REPRES
8901	1º mai -1958	Myotis Myotis	F	ad	Gotte des Fées les Baux	Rebuhi a Massille	
2	4	4	F		(150.142.)	4	-
3	4		F	4	,	"	-
_ 4	-4	Miniopteri de Schribers	М	11		4	-
05		Myotis Myotis	F	- 6	,	4	
6		,	F	- 4	,		-
- 7	4	,	p		4	.,	
8	4	4	F		4	,	
9	,	,	F	- 4	,	4	
8910		le .	F	- 14	,		
4	4		F	-4	4	4	
2	4		fs.	6	4-	4	
3	4	.,	F	4		4	
4			F	4		,,	
45	1) 4	4	F	4	4	4	
6		Miniopotere De Sahuillers	М	4	,,		
7		Myotis Myotis	F	v	4	.,	
8	4	Miniopter De Schuilen	F	4	,,	"	
9		4	F	4	,		
8920			M	"		"	
1		Myotis Mgotis	F			4	
9		Minor De Schule	F	1			


Banding activity


- Banding → 1102 towns
- ▲ Recovery →703 towns


Towns surveyed for the ringing reoveries are yet well represented

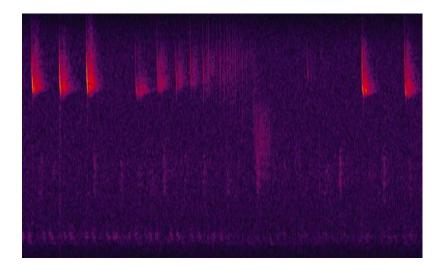
Banding activity

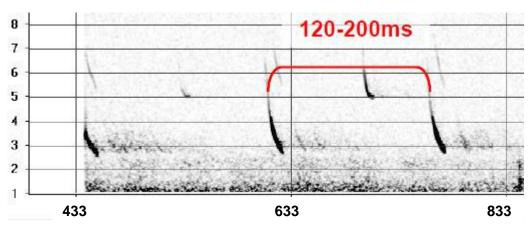


Species banded

OBJECTIFS:

- Conserver des données historiques : saisie et sauvegarde, alimenter les inventaires...
- Possibilité d'identifier **des gîtes** ou **populations**; estimer des taux de disparition ou de modification des **gîtes**
- Comparer les cortèges d'espèces et leur répartition
- Mieux comprendre les **processus démographiques (climat, habitat)** et identifier les **causes de déclin**
- Disposer de **tendances de référence**, arguments de poids vis-à-vis des tendances actuelles et des attribution de statut de conservation actuel (N2000, LR...)
- Relancer la discussion sur le baguage

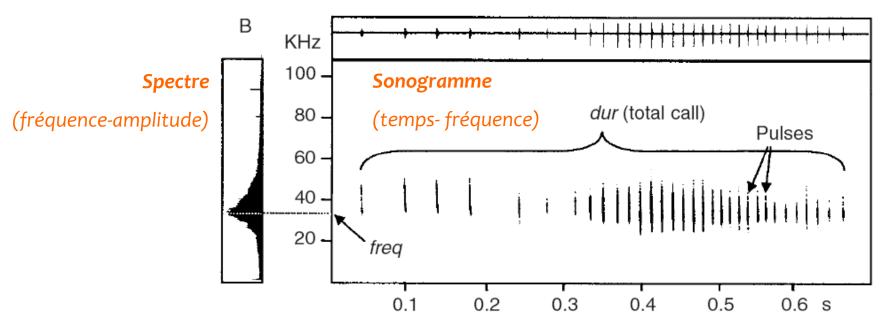



Les chiroptères émettent des cris en permanence quand ils volent.

1 cri tous les 1 à 3 battement d'ailes (2-15 cris/sec)

Détection des proies mais aussi des obstacles, congénères, plans d'eau pour s'abreuver, etc.

Les ultrasons peuvent être transformés en sons audibles à l'oreille humaine et/ou identifiés à partir des <u>sonagrammes</u>


Sérotine commune (*Eptesicus serotinus*)

Critères d'identification basés sur :

- Fréquence
- Amplitude
- Durée
- Intensité
- Structure
- Rythme

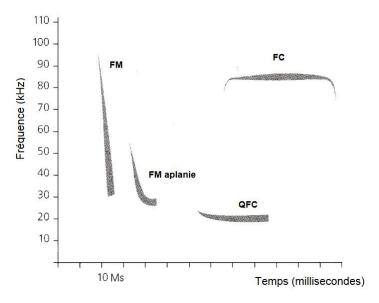
du signal

Oscillogramme (temps-amplitude)

Les méthodes de suivi

La détection ultrasonore

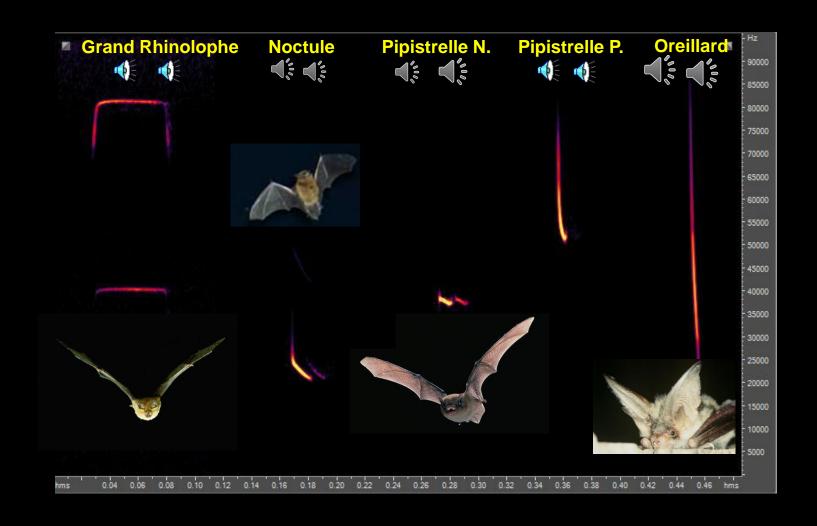
3 techniques

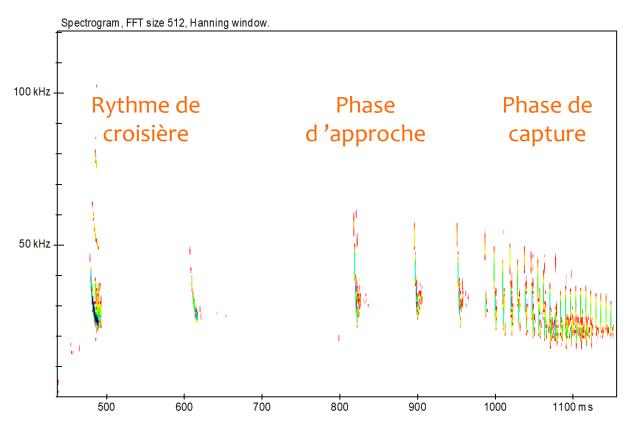

➤ **Division de fréquence :** les fréquences sont divisées en temps réel pour obtenir un son audible pour l'Homme

➤ **Héterodyne**: soustraction de fréquence par rapport à un seuil

➤ Expansion de temps : L'onde enregistrée est restituée 10 x plus lentement

→ plus la fréquence est haute, plus la chauve-souris détecte de petits objets (ex : petit moucheron), mais moins les cris se propagent : faible rayon de détection


QFC (quasifréquence constante) – Des signaux longs à faible largeur de bande de fréquence : espèces chassant en plein ciel, en milieu ouvert, besoin d'un signal sonore faiblement atténué par l'air et donc allant loin.


FM (fréquence modulée abrupte) - des espèces chassant dans les milieux les plus fermés, qui glanent les insectes sur la végétation, auront besoin d'un signal leur permettant d'avoir une vision très précise des multiples obstacles dans l'environnement. Elles émettent donc des signaux courts à grande largeur de bande de fréquence qui leur permettent d'obtenir des échos réguliers et précis, en fréquence modulée abrupte

FMA (fréquence modulée aplanie) - espèces un peu intermédiaire qui chassent en milieu semi-ouvert et qui ont besoin d'un compromis entre précision et longue portée.

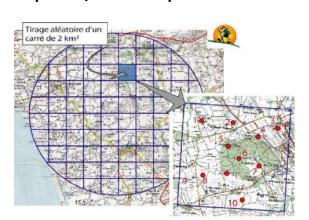
FC (fréquence constante) - espèces chassant en milieux semi encombrés et qui émettent des signaux longs et à faible largeur de bande, en fréquence constante, qui se servent du retour d'écho et de l'effet doppler pour localiser leurs proies

La détection ultrasonore : buzz de capture d'une Sérotine commune

Suivi acoustique au MNHN

Programme de sciences participatives à destination des naturalistes

Pour suivre les tendances des populations des espèces communes

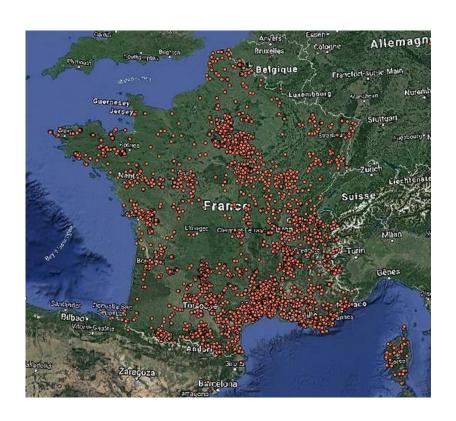

Selon des protocoles standardisés (lieux, périodes, matériel et configuration)

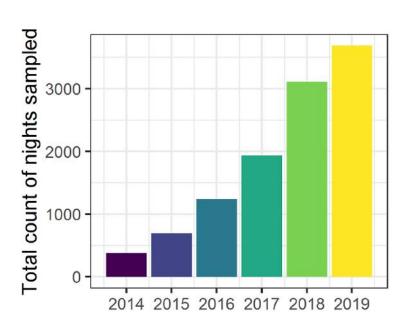
Routier 10 x 2 km / 25 km/h

Depuis 2006

Pédestre 10 points / 2x2 km squares

Depuis Points Fixes
2014 1 - 10 points / carrés 2x2 km




Nuits entières

Plus récentes statistiques de participation pour les points fixes (Déc 2021):

- 16 349 points
- 49 909 nuits complètes d'enregistrements
- 567 participants

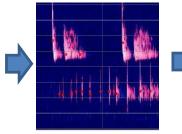
Identification automatique: Tadarida (open source)

Software Metapapers

Tadarida: A Toolbox for Animal Detection on **Acoustic Recordings**

Authors: Yves Bas , Didier Bas, Jean-François Julien

Vigie-Chiro Suivi des chauves-souris


Collecte de données

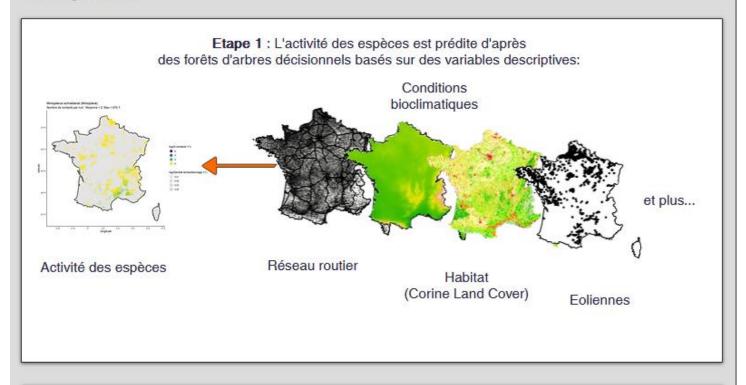
Transfert en ligne

Archivage sécurisée (IN2P3)

Analyse (Tadarida)

#	Taxon parent	Nom	Nb contact min	Nb de contac
1	Chiroptères	Oreillard gris (Plecotus austriacus)	0	13
2	Chiroptères	Minioptère de Schreibers (Miniopterus schreibersii)	1	2
3	Chiroptères	Pipistrelle soprane (Pipistrellus pygmaeus)	3252	3334
4	Chiroptères	Noctule de Leisler (Nyctalus leisleri)	43	110
5	Chiroptères	Murin de Daubenton (Myotis daubentonii)	0	11
6	Chiroptères	Murin à oreilles échancrées (Myotis emarginatus)	0	.1
7	Chiroptères	Pipistrelle de Kuhl (Pipistrellus kuhlii)	642	702
8	Chiroptères	Sérotine commune (Eptesicus serotinus)	0	28
9	Chiroptères	Murin de Capaccini (Myotis capaccinii)	0	1
10	Chiroptères	Pipistrelle de Nathusius (Pipistrellus nathusii)	3	5

Bilan automatique


Online manual checking

https://github.com/Scille/vigiechiro-front SCILLE https://github.com/Scille/vigiechiro-api

Cartes prédictives de distribution

Les cartes prédictives de distribution sont générées grâce aux modèles de forêts d'arbres décisionnels, dont le but est de prédire l'activité des chauves-souris (la variable réponse) en utilisant différentes variables descriptives comme l'habitat, les conditions bioclimatiques, la topographie, la proximité aux routes, aux éoliennes, ou l'éclairage artificiel.

Etape 2 : Grâce aux forêts d'arbres décisionnels construits à l'étape 1, les predictions sont réaliséessur une grille systématique de 300 000 points couvrant la France.

Etape 3: Pour chaque groupe d'espèces proches acoustiquement, les données de capture (programme CACCHI) sont utilisées selon le même principe que les étapes 1 et 2 pour créer des cartes prédictives de la proportion de l'espèce parmi son groupe acoustique (oreillards, grands myotis, etc).

Les étapes 1 et 2 sont réalisées séparément pour chaque espèce.

Tendances prédictives des populations

Méthodes

Les données sont modélisées avec des modèles appelés GLMM (famille négatif binomial). La variable d'intérêt est le nombre de contacts par tronçon/point/nuit.

Les modèles tiennent compte des aléas météorologiques (température et vent), du protocole utilisé et de la durée des transects routiers (variables fixes), et du site et du matériel utilisé (variables aléatoire).

On contrôle également les capacités du modèle à bien séparer ces effets de ceux de la dynamique de population par la méthode du VIF (Variance Inflation Factor).

Une éventuelle dégradation du matériel est également contrôlée par la mesure de la durée de séquence des pipistrelles, après avoir écarté tous les enregistrements suspectés d'être déficients.

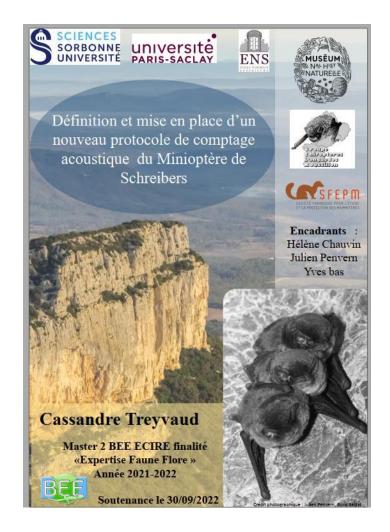
Etat des populations

En France, certaines espèces (non cavernicoles) connaissent aujourd'hui un déclin... surtout en IDF

Pipistrellus pipistrellus DECLINE
-9% (-13; -3%)
Déclin significatif
Déclin de cette espèce est en
effet plus prononcé dans le

Bassin Parisien (Ile-de-France,

Touraine, Normandie).


Eptesicus serotinus DECLINE -30% (-41; -17%) Déclin significatif sans variation géographique significative. Déclin préoccupant

91; -84%)
Déclin très préoccupant sans variation géographique significative.
Mauvaise nouvelle pour cette espèce migratrice et sensible au risque de collision avec les pâles

d'éoliennes.

Nyctalus noctula DECLINE -88% (-

Action 1 qui vise l'harmonisation des méthodes de comptages hivernaux et estivaux de l'espèce dans l'objectif d'obtenir des tendances d'effectif plus fiable

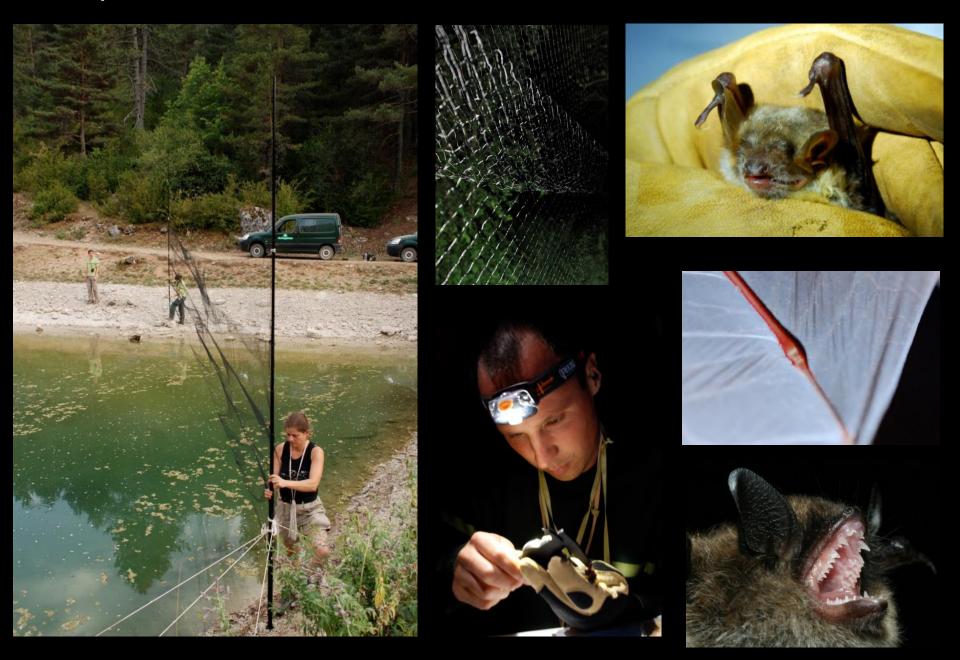

Action 2 qui vise à monter un nouveau protocole de comptage acoustique de cette espèce en sortie de gîtes afin de suivre l'occupation des sites de manière plus complète.

Figure 2 : Infographie, défis à relever dans la mise en place du protocole de comptage acoustique

- Quelle est la position de micro la plus optimale pour un comptage efficace ?
- Quelle est la durée de contact qu'il faut définir dans un contexte de sortie de gîte ?
- Est-ce que les minioptères ont tendance à changer leurs comportements en présence d'observateurs en réalisant par exemple plus d'allers-retours par curiosité ?
- Et plus globalement, quelles sont les variables qui influencent la sortie des minioptères, la qualité d'enregistrement acoustique et donc le bon fonctionnement du protocole de comptage ?

La capture au filet

Objectifs:

en place depuis 2013

- Diffusion des connaissances théoriques et techniques nécessaires à la pratique de la capture
- Homogénéisation des pratiques
- Déontologie commune
- Définition d'un cadre scientifique
- Collecte de données de qualité et harmonisées
- Validation des compétences

FORMATION CAPTURE

GESTION ET VALORISATION DES DONNEES

Objectifs:

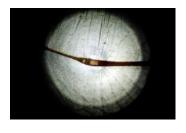
- Développement du programme de recherche national : valorisation de l'existant et protocoles de récolte des données
- Aide à l'analyse des données au niveau local
- Archivage des données

débuté en 2013

Objectifs:

- en cours...
- Harmonisation et simplification des procédures
- Traitement équitable des demandes de dérogation
- Evaluation scientifique des programmes
- Soutien scientifique et méthodologique
- Vision nationale des programmes
- Montage de partenariats et de collaborations
- Circulation de l'information

VEILLE SCIENTIFIQUE



Objectifs:

- · Synthèse des connaissances
- · Veille sur les pratiques
- · Mise en commun des savoirs
- Diffusion des connaissances et des savoirs
- Favorisation des échanges d'informations et d'expériences

débuté en 2011

La capture indispensable pour :

Obtenir des données sur :

- Espèce : critères morphologiques, génétique Ex : Plecotus, Rhinolophus, certains Myotis (spA, Murin de Brandt, grands murins...)
- Sexe, Âge (à certains moments de l'année)
- Mesure de paramètres biologiques : morpho., statut repro.
- Cortège de parasites
- Biomécanique...

Mais aussi pour répondre à des questions qui nécessitent de :

- Marquer des individus (bagues, transpondeurs, capsules luminescentes...)
- Poser un émetteur
- Prélever des échantillons biologiques

Les limites de la capture

Une méthode invasive

• Stresse, gêne, cas de blessures/mortalité

Une méthode pas toujours accessible :

- Besoin d'une dérogation
- Couteuse en temps, énergie, argent
- Requiert une formation longue

Succès relatif:

- Espèces qui se capturent difficilement
- Evitement des filets démontré

Peu d'exploitation quantitative :

- Succès faible
- Sans marquage individuel: difficile d'estimer une abondance, survie ...

Le taux de capture dépend fortement de :

- Conditions météo
- Dispositif et effort
- Fréquence des vérifications des filets

→ Très difficile de comparer les données de différentes sessions (milieux, nuits...)

Programme national de Recherche « Capture »

Données récoltées dans un contexte local

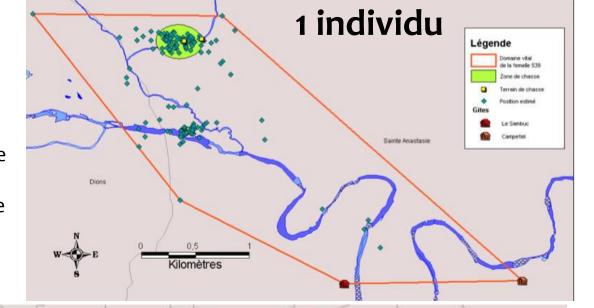
Mutualisation

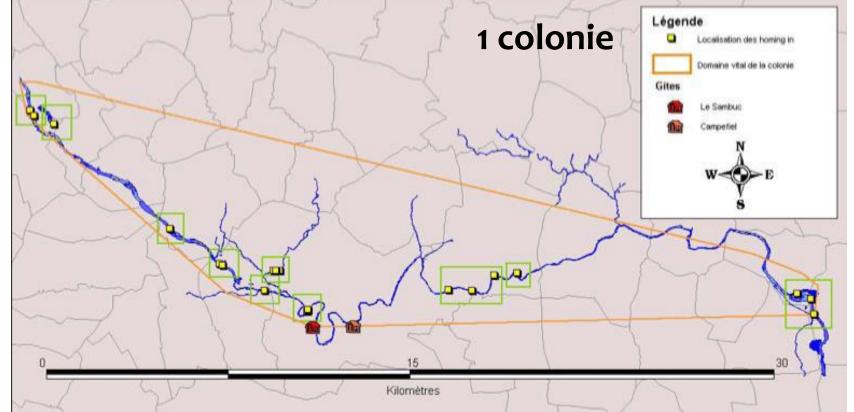
Jeu de données à large échelle spatiotemporelle Amélioration des connaissances sur :

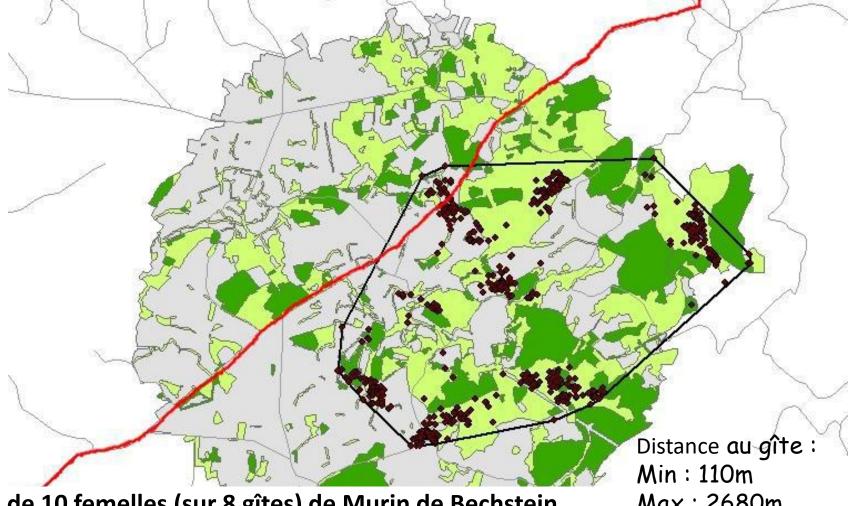
- Phénologie des espèces et influence des conditions environnementales (reproduction, réserves, etc.)
- Etat de santé des populations et influence des conditions environnementales (IMC, sex-ratio, âge-ratio, % de reproducteurs)
- Phénomène de swarming
- Espèces migratrices (phénologie, reproduction)
- **Biométrie des espèces** : dimorphisme, croissance des juvéniles, variabilité interspécifique

Radiopistage

Le radio-pistage pour étudier :


- l'exploitation des terrains de chasse
- la connectivité: vitesse de transit, rôle des linéaires, horaires etc.
- identifier les gîtes




Grande colonie cavernicole

Résultats de radiopistage de Murins de Capaccini dans les gorges du Gardon. 11 femelles allaitantes dans une colonie de 600.

Petite colonie arboricole

Suivi de 10 femelles (sur 8 gîtes) de Murin de Bechstein.

Individus casaniers,

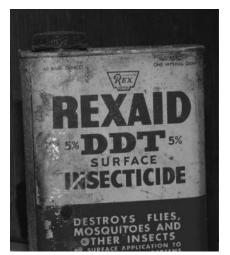
Feuillus très largement sélectionnés,

Zones humides beaucoup moins,

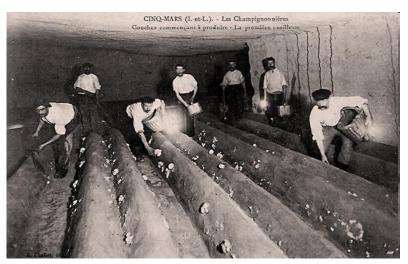
Strates buissonnantes très attractives, peuplements-tempête souvent sélectionnés.

Max: 2680m

Moy: 1263,5m



Etat des populations et menaces


Etat des populations

Dynamique des populations → très compliquée à étudier

Forte décroissance des populations dans les années 50

Effet des pesticides

Dérangements dans les gîtes

Modification de l'habitat

Pressions moins fortes mais toujours présentes aujourd'hui

Pression toujours très forte

Les menaces

Prédation

habitats

Collisions sur les routes

Effet des pesticides

Une mauvaise réputation...

Collisions avec les éoliennes

Problématique « éoliennes »

Des effets répulsifs mais aussi attractifs

- Effet directs : collision, barotraumatisme, mortalité
- Effets indirects : altération des territoires de chasse

Les menaces

- Des espèces longévives
- Taux de fécondité faible
- Taux de survie élevé pour les adultes, survie des jeunes variable selon les espèces mais faible la première année
 Résilience des populations faible → plus difficile de faire face à des perturbations

Insectivores, spécialistes pour certaines espèces : effets directs et indirects des pesticides

Cycle de vie avec une phase sensible, l'hibernation

